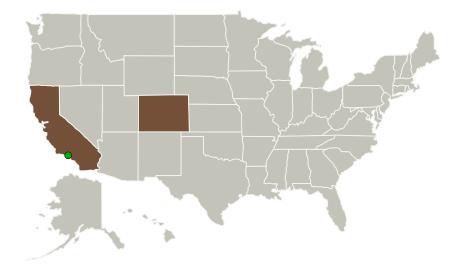
High Frequency Reflective Mesh for Small Aperture Antennas, Phase II



Completed Technology Project (2017 - 2019)


Project Introduction

The proposed Phase II program would develop and prototype a high frequency, high performance reflective mesh that is well suited to the emerging small aperture antenna designs. The program will build on the testing knowledge of the Phase I prototyped mesh. 40 OPI gold mesh will be prototyped and integrated to a cubesat Ka-band reflector. Carbon nanotube yarn will also be knitted into a 30 OPI mesh and tested on a similar antenna. The Phase II program will move the mesh to TRL 6. The goal is to make cost effective and robust mesh for the small aperture antenna community. RF test samples and a complete deployable Ka-band antenna will be delivered to NASA JPL for RF testing.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Tendeg LLC	Lead Organization	Industry Small Disadvantaged Business (SDB)	Louisville, Colorado
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

High Frequency Reflective Mesh for Small Aperture Antennas, Phase II

Table of Contents

Project Introduction Primary U.S. Work Locations	1	
and Key Partners	1	
Project Transitions		
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)		
Technology Areas	3	
Target Destinations	3	

Small Business Innovation Research/Small Business Tech Transfer

High Frequency Reflective Mesh for Small Aperture Antennas, Phase II

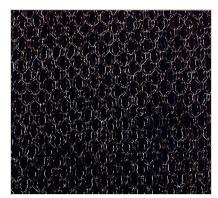
Completed Technology Project (2017 - 2019)

Primary U.S. Work Locations		
California	Colorado	

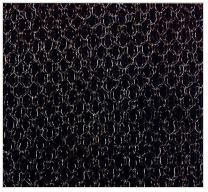
Project Transitions

0

April 2017: Project Start



September 2019: Closed out


Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140832)

Images

Briefing Chart ImageHigh Frequency Reflective Mesh for Small Aperture Antennas, Phase II Briefing Chart Image (https://techport.nasa.gov/image/127102)

Final Summary Chart Image High Frequency Reflective Mesh for Small Aperture Antennas, Phase II (https://techport.nasa.gov/imag e/131181)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Tendeg LLC

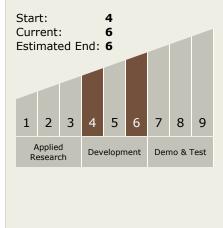
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Gregg Freebury

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Frequency Reflective Mesh for Small Aperture Antennas, Phase II

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

- TX08 Sensors and
 Instruments
 TX08.2 Observatories
 TX08.2.2 Structures
 and Antennas
- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

